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Fig. 4. Shear modulus, Poisson's ratio and bulk modulus 
vs. pressure as computed from Voigt-Ruess-Hill ap
proximation for polycrystalline Ti with random grain 
orientation. The density vs. pressure data are obtained 
from the isothermal volume compressibility data given 

in Fig. 3. 

Anderson [7] has successfully extrapolated 
the low pressure ultrasonic data to estimate 
compression of various solids to high pressure. 
The basic assumptions, given by Murnaghan 
[8], are that the (aKTlap)p-+o, where KT is the 
isothermal bulk modulus, is a constant quantity 
in this range of extrapolation. The Murnaghan 
equation of state can be written [4] as 

_ [ (aKT) (~)] - I /(aKTlaPh 
VIVo - 1 + ap T KT (5) 

where V and Vo are volumes at pressure P 
and at zero pressure, respectively. The value 
of (aKTlap) , obtained by using Overton's 
relationships [9J, is calculated to be 4·35. 
Thus the compression equation becomes 

VIVo = [1 + 0·0040923PJ-O'22978. (6) 

In Fig. 5, a comparison between the experi
mentally determined VIVo values and the 
ultrasonic equation of state is shown. There 
is a fairly good agreement between the iso
thermal compressibility data of Bridgman [10] 
and the ultrasonic equation. There is a poor 
agreement between the latter and the shock
wave data[11], probably because of the phase 
change that has been reported for Ti near 
90 Kbar [12]. 
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Fig. 5. Comparison of compression data for Ti as ob
tained from isothermal compressibility measurements of 
Bridgman[IO] , from ultrasonic equation of state derived 
from isothermal dK/dP, where K is the bulk modulus , 

and from shock wave data given in Ref. [II] . 

4. DISCUSSION OF RESULTS 

In Table 2 the pressure derivatives of the 
stiffness moduli for Ti are compared with 
those of other h.c.p. metals [l3-15]. The 
purpose of this comparison is to show that 
there is a general decrease with the cIa ratio 
of the pressure derivatives of the Cu, where 
i = j, and that the pressure derivatives of the 
C l4 and C66 shear moduli are very significantly 
reduced at cIa < 1·62. The following dis
cussion is based on the presumption that the 
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Table 2. Pressure derivatives at 25°C of the 
adiabatic stiffness moduli for Ti compared to 

those for Zr, Gd, Mg, and Cd 

Ti Zr* Gdt Mgt Cd§ 

cIa ratio 1·587 1·593 1·590 1·62 1·88 

dClI/dP 5·01 3·93 3·12 6·11 9·29 
dCaa/dP 4·88 5·49 6·02 7·22 7·26 
dC« ldP 0·52 -0·22 0·07 1·58 2·38 
dC66ldP 0·45 0·26 0·36 1·36 2·59 
dC12/dP 4·11 3·42 2-39 3·39 4·10 
dC'3/dP 4·05 4·25 3·55 2·55 5·66 
dK,ldP 4·31 4·08 3·22 4·05 7·02 

*Ref. [1] 
tRef. [l3] 
tRef. [14] 
§Ref. [15]. 

effect of changing the cIa ratio during appli
cation of hydrostatic pressure assumes a 
more significant role in changing the Cij and 
the phonon frequencies when the initial 
cIa < 1·62. We first present a simple formal 
approach to show that the wide difference in 
dC44/dP between Ti and Zr, and other 
differences between the elastic properties 
of the two metals, can be explained by the 
difference between the respective {3.L values. 
We then show that the differences between 
the average mode Griineisen Y' (q), "iH, as 
calculated from the dCij/dP (i = or ¥- J) for 
Ti and Zr and as calculated from the volume 
thermal expansion can probably be explained 
by the differences in d(c/a)dV between the 
two experimental conditions. 

(a) Separation of AV and A(c/a) effects on 
the Cu 

The following equations are developed to 
show the parameters that relate the volume 
change and the c/ a change, separately, to 
the total measured dCij/dP: 

dCi j/dP = (aCij/ap)cta 

d(c/a) + (aCij/a(c/a)h dP (7) 

(8) 

= - {3vCij(a In Cij/a In V)cta 

+ (c/a) ({3.L -(311) (aCij/a(c/a) h. (9) 

For cubic metal crystals[16] the measured 
dCij/dV values in all cases are negative 
(dCij/dP > 0), as expected for normal solids 
with positive values of the Griineisen y, so 
we can reasonably expect (aCi;/aV)cta to be 
negative. Thus the occurrence of a negative 
value for dCij/dP will depend on the difference 
({3.L - (311) and the value of (aCij/a (c/a) h. Since 
({3.L - (311) is positive for Zr and negative for Ti, 
the wide difference in dC44/dP for the two 
metals can be simply related to a relatively 
large and negative value for (aC44/a(c/a» v. 
If we go further and assume that the values 
for the two partial derivatives for each Cij 
are the same for Ti as in Zr, an assumption 
which is perhaps reasonable in view of the 
many other similar properties, we arrive at 
the quantitative values given in Table 3. The 
first two columns list the values for the two 
unknowns that are obtained by simultaneously 
solving equation (9) with the known co
efficients and measured dCij/dP for Ti and Zr. 
The components of dCij/dP due to AV and to 
A(c/a) for each metal are listed in columns 3 
and 4, respectively. For Ti the change in 
modulus due to the cIa change is less than 
4 per cent of the total pressure derivative for 
Cll , C33' C12' and C13' whereas, the contri
butions to dC44/dP and dC66/dP are about 
24 and 11 per cent, respectively. For Zr the 
A(c/a) contributions are considerably larger, 
because of the relatively large anisotropy in 
f3.L and (311' and the negative contribution to 
dC44/dP overwhelms the positive effect of the 
volume decrease. 

(b) AV and A( cIa) effects on the normal mode 
frequencies of lattice vibrations 

In the quasi-harmonic approximation the 


